A Work-Efficient GPU Algorithm for Level Set Segmentation

Mike Roberts™*

Mario Costa Sousa™

Joseph Ross Mitchell*

University of Calgary

Total Computation Time: 7 seconds

Figure 1: The progression of our algorithm while segmenting the brain matter in a 256 head MRI with a signal-to-noise ratio of 11. Our
algorithm interactively computes this segmentation in 7 seconds — 14X faster than previous GPU algorithms with no reduction in accuracy.

Abstract We present a novel GPU level set segmentation algo-
rithm that is both work-efficient and step-efficient. Our algorithm
has O(logn) step-complexity, in contrast to previous GPU algo-
rithms [Lefohn et al. 2004; Jeong et al. 2009] which have O(n)
step-complexity. Moreover our algorithm limits the active com-
putational domain to the minimal set of changing elements by ex-
amining both the temporal and spatial derivatives of the level set
field. We apply our algorithm to 3D medical images (Figure 1) and
demonstrate that our algorithm reduces the total number of pro-
cessed level set field elements by 16x and is 14 x faster than pre-
vious GPU algorithms with no reduction in segmentation accuracy.

Introduction Identifying distinct regions in images — a task known
as segmentation — is an important task in computer vision and medi-
cal imaging. The GPU narrow band algorithm for level set segmen-
tation can compute highly accurate segmentation results for noisy
medical images and dramatically reduces computation times com-
pared to optimized CPU implementations. However the GPU nar-
row band solver we tested took over 100 seconds converge on the
brain matter in a 256 head MRI on an Nvidia GTX 280 (Figure
2). This limitation constrains clinical applications and motivates
our work-efficient algorithm.

The GPU narrow band algorithm avoids unnecessary computation
by only updating field elements near the level set surface. We make
the observation that even computations near the level set surface can
be avoided in regions where the level set field has locally converged.
This observation motivates our novel method of tracking the active
computational domain.

Our Algorithm We define the level set field value of an element x
as ¢(x). For each iteration, we initialize the active computational
domain for the following iteration to be empty. Then for each cur-
rently active element a, we check to see if Vp(a) # 0 and if there
are any neighboring elements n around a (including a itself) such

that 5%&") # 0 where ¢ is simulation time. We add all such elements

to the active computational domain for the following iteration.

We summarize our GPU algorithm for generating a new dense list
of active elements from an old one as follows: (1) output new active
elements in parallel such that each thread outputs all the new active
elements in the neighborhood around one old active element; (2)
remove all the duplicate active elements from step 1; (3) compact
all the unique new active elements from step 2 into a new dense list.

In step 1 we output the neighbors along each cardinal direction into
separate buffers. This guarantees that each buffer contains no du-
plicate elements. In step 2 we tag a 3D scratchpad buffer at all the

*email: {mlrobert,smcosta,rmitch} @ucalgary.ca

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

[« OurAlgorithm « GPU Narrow Band |
15% /_'-f 4877
10%

/ 294
5%

/ Total Processed
Elements (millions)

Active Computational
Domain (%)

0%
0 500 1000 1500 2000 2500
Iteration Number

e 50 102

Fg 40

c

S8 30 7
i

2= 20 )
g E Total Computation
3= Time (seconds)

.

0 500 1000 1500 2000 2500
Iteration Number

0

Figure 2: The active computational domain size (top) and speed
(bottom) of our algorithm and the GPU narrow band algorithm
while segmenting the brain matter in a 256> head MRI. Both algo-
rithms produced equally accurate segmentations.

left neighbors. For all the right neighbors we check if they’re al-
ready tagged in the 3D scratchpad: if so we remove them remove
them from the right neighbor buffer; if not we tag them in the 3D
scratchpad. We repeat this process for all neighbor buffers. This
process does not require sorting or any additional per-thread syn-
chronization primitives (e.g atomic memory operations) since there
are no duplicate elements in each neighbor buffer. In step 3 we
use a work-efficient and step-efficient stream compaction algorithm
[Harris et al. 2007] to compact each neighbor bufter.

References

HARRIS, M., SENGUPTA, S., AND OWENS, J. D. 2007. Parallel prefix sum (scan)
with CUDA. In GPU Gems 3, H. Nguyen, Ed. Addison Wesley, Aug.

JEONG, W.-K., BEYER, J., HADWIGER, M., VAZQUEZ, A., PFISTER, H., AND
WHITAKER, R. T. 2009. Scalable and interactive segmentation and visualization
of neural processes in EM datasets. IEEE Trans. Vis. Comp. Graphics 15, 6.

LEFOHN, A. E., KNISS, J. M., HANSEN, C. D., AND WHITAKER, R. T. 2004.
A streaming narrow-band algorithm: Interactive computation and visualization of
level sets. IEEE Trans. Vis. Comp. Graphics 10, 4.



